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This paper studies dispersive optical solitons, governed by Schrödinger-Hirota equation by the aid of traveling wave 
hypothesis. The spatio-temporal dispersion term is included, in addition to group velocity dispersion, to make the problem 
well-posed. Bright soliton solutions are retrieved along with constraint conditions for these solitons to exist. Both Kerr and 
power laws of nonlinearity are studied. 
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1. Introduction 
 

Optical solitons is an important area of research in 

the field of nonlinear optics [1-20]. Today, fiber optic 

communication links, across trans-oceanic and trans-

continental distances, are achieved by means of optical 

solitons. Therefore, it is imperative to take a deeper look 

into the aspects of solitons, especially from a 

mathematical perspective.  This enables to paint a better 

conceptual picture behind the physics of soliton 

propagation. Solitons are the outcome of a delicate 

balance between dispersion and nonlinearity. 

This paper studies dispersive optical solitons where 

third order dispersion (3OD) is included in addition to 

usual group-velocity dispersion (GVD). This transforms 

the usual nonlinear Schrödinger’s equation (NLSE) to 

Schrödinger-Hirota equation (SHE), after implementing 

Lie transform. Traveling wave hypothesis will be 

applied to obtain bright optical soliton solutions to SHE 

that will be considered with Kerr law and power law 

nonlinearities. There are several constraint conditions 

that will naturally emerge from the soliton solution 

structure.  Therefore the bright solitons are guaranteed to 

exist when these constraints are in place. 

 

 

2. Governing equation 
 

The nonlinear evolution equation that models the 

propagation of solitons through optical fibers, with 3OD 

is the NLSE 
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Here   is the coefficient of 3OD. The first term on the 

left hand side is the linear temporal evolution, while the 

second term represents GVD. Also, on left side, the third 

term accounts for Kerr law nonlinearity. The inclusion of 

3OD is justified when GVD is low. Next, to study this 

equation in details, the following Lie symmetry is 

introduced: 
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which transforms (1) to  
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after neglecting higher order terms [9, 12, 19].  Equation (3) 

is SHE with Kerr law nonlinearity. Therefore, SHE models 

transmission of dispersive optical solitons through nonlinear 

fibers. With arbitrary coefficients, SHE can be rewritten as 
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Physically  represents nonlinear dispersion. It was 

indicated during 2012,  that GVD alone makes the governing 

model ill-posed [8, 15]. Therefore, it was proposed that 

inclusion of an additional dispersion term, namely the 

spatio-temporal dispersion (STD) introduces well-posedness 

[8, 15]. Hence, SHE with STD is 
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where the coefficient of b  represents STD. Finally, in 

presence of perturbation terms, SHE with STD extends 

to 
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This paper will carry out the integration of the 

perturbed SHE with STD by implementing traveling 

wave hypothesis. This analysis will be detailed in next 

section. 

 

 

3. Traveling wave hypothesis 
 

The starting hypothesis for solving (6) by the aid of 

traveling waves is given by [1, 4]  
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where in (7), ),( txg  represents the wave profile and 

),( tx  is the phase component of the soliton that is 

defined as 
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and also  

 

vtxs                               (9) 

 
Here, in (9) v  represents the soliton velocity, while 

from phase component that is given by (8),   is the 

constant soliton frequency,   is soliton wave number 

that is also taken to be constant and   is the center of 

phase or in other words phase constant for the soliton. 

The study will now be subdivided into two subsections 

that concentrates on Kerr law and power law media.  

 

 

3.1 Kerr law 

 

Substituting (7) into (6), and decomposing into real 

and imaginary parts lead to [1, 4] 
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and 
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respectively, after simplification. The notations 

dsdgg  , 
22 dsgdg   and so on are introduced.  

To start with the real part equation, multiplying (10) by 

g   and integrating, yields, after choosing integration 

constant to be zero 
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Separating variables and integrating (12) gives  
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which implies  
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where the amplitude 1A  and the inverse width 1B   of the 

soliton are respectively 
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and  
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Next, integrating the imaginary part equation (11) once, 

and again choosing the integration constant to be zero, since 

the search is for a soliton solution, leads to 
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Proceeding, after separation of variables, one 

recovers  
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This gives  
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where the amplitude 2A  and the inverse width 2B  of 

the soliton are respectively given by 
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respectively. Since (15) and (21) represent the same 

soliton, equating the two amplitudes 1A  and 2A   gives  
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and then equating the two widths 1B  and 2B   leads to  
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Finally, from (24) and (25), equating the two right 

hand sides, reveals  
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which serves as a constraint relation between the coefficients 

and soliton parameters of the SHE with Kerr law 

nonlinearity. Thus, finally, the 1-soliton solution of (6) is  
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where the amplitude and the inverse width of the soliton is 

given by the pair (16)-(17) or (22)-(23). The wave number of 

the soliton is from (24) or (25). This leads to the constraint 

condition given by (26). Additional constraint conditions are 

 

0)(

)(

32 







ab

c
               (28) 

 

0)(

)3(

32 







ab

bva
            (29) 

 

  0)(32

)23(

2 



vbav 


    (30) 

 
and  

 

  0)(32 2  vbav       (31) 

 

that follow from relations (16)-(17) and (22)-(23), 

respectively. These conditions guarantee the existence of 

bright solitons for SHE with STD in Kerr law medium. 

 

 

3.2 Power law 

 

For power law nonlinearity, perturbed SHE with STD 

extends to  
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where the power-law nonlinearity factor n kicks in. It was 

proved earlier that the restriction 20  n  must remain 

valid to avoid self-focusing singularity [14].  It is clear that 

Kerr law nonlinearity falls out upon setting 1n  in (32). 

In order to integrate (32), the same hypothesis given by 

(7)-(9) is substituted into (32) and subsequently decomposed 

into real and imaginary parts. These respectively lead to 
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after simplification.  

To start with the real part equation, multiplying 

(33) by g    and integrating, yields, after simplification 

and once again choosing integration constant to be zero 
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Separating variables and integrating (35) gives 
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which leads to 
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where the amplitude 1A  and the inverse width 1B   of 

the soliton are respectively given by 
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respectively. 

Next, integrating the imaginary part equation (34), with 

integration constant zero, implies 
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Proceeding, after separation of variables, one recovers 

 











ngNg

dg

vtx
nn

nn

22

)(
)12)(1(

2)12(





          (42) 

where  

 







nn

vb

av
nn

N

2)12(

)(3

2
)12)(1(

2

2


















     (43) 

 

This gives  
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where the amplitude 2A  and the inverse width 2B  of the 

soliton are 
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respectively. From (39) and (45), equating the two 

amplitudes 1A  and 2A   gives 

 










nn

c
vb

av
n

ab

2)12(

)(
)(

32
)12(

2

32





















(47) 

and then equating the two widths 1B   and 2B   reveals 

(25). 

Finally, from (47) and (25), equating the two right 

hand sides leads to the constraint 
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This relation between coefficients and parameters 

must be valid for the existence of bright soliton solution 

of SHE with STD in power law medium. 

Thus, finally, the 1-soliton solution of (32) is 
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where the amplitude and the inverse width of the soliton 

is given by the pair (39)-(40) or (45)-(46).  The wave 

number of the soliton are recoverable from (47) or (25). 

More constraint conditions are given by (28), (29) and 

(31). However, condition (30) now generalizes to 
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that follows from (45). These conditions guarantee the 

existence of bright solitons for SHE with STD with 

power law nonlinearity. It needs to be noted that all 

results of Kerr law nonlinearity are recovered upon 

setting 1n  in this sub-section. 

 

4. Conclusion 

 
This paper obtains bright 1-soliton solution of SHE 

with STD in presence of several Hamiltonian type 

perturbation terms. Both Kerr and power law nonlinearities 

are considered.  All the results of power law nonlinearity 

collapse to the case of Kerr law medium upon setting the 

power law nonlinearity parameter to unity. There are several 

constraint relations that naturally fell out from the algebraic 

structure of soliton parameters. The existence of bright 

solitons is guaranteed when these conditions hold.  

The results of this paper are generalized version of a 

previously reported paper where SHE was studied without 

STD [1]. Moreover, it was only power law nonlinearity that 

was reported there. The results of this paper stand on a 

strong footing for pursuing further studies with SHE in 

presence of STD. It is clear that traveling wave hypothesis 

has limitations to the extraction of soliton solutions to SHE. 

This scheme only retrieves bright soliton solutions. Later, 

additional integration tools will display dark and singular 

soliton solutions to perturbed SHE with STD. Those results 

will be reported in future. Moreover, this study will be 

extended to birefringent fibers and DWDM system and the 

results of those researches will be published elsewhere.  
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